UNILECH.2%

INTERNATIONAL SCIENTIFIC CONFERENCE
17-18 November 2017, GABROVO

COMPARISON OF STRING MATCHING ALGORITHMS IN WEB
DOCUMENTS

H. Nusret Bulus
Namik Kemal University

Erdin¢ Uzun
Namik Kemal University

Abstract

Alpay Doruk
Namik Kemal University

String matching algorithms try to find position/s where one or more patterns (also called strings) are occurred in
text. In this study, we compare 31 different pattern matching algorithms in web documents. In web documents,
searching is crucial process for content extraction process. Therefore, lengths of html tags are examined for
determining which algorithm or algorithms are suitable for matching process. Our experiments show that Skip Search
algorithm is the best pattern matching algorithm with 0.170 ms for web documents. Moreover, it has 0.002 ms in

preprocessing time and 0.168 ms in searching time.

Keywords: keywords, keywords, keywords, keywords, keywords, keywords, keywords.

INTRODUCTION

Pattern matching is defined as searching
through a string of characters looking for
instances of a given "pattern" string; we wish
to find all positions [1]. Pattern matching is
used for tasks such as intrusion detection, virus
scanning, and information retrieval. The well-
known Knuth-Morris-Pratt (KMP) [1] and
Boyer-Moore (BM) algorithms [2] were
created to search for single patterns, while the
Aho-Corasick (AC) [3] and Wu-Manber
(WM) [4] multi-pattern matching algorithms
are capable of inspecting multiple pattern sets
simultaneously [5].

HTML (Hyper Text Markup Language) is a
markup language used to create web pages on
the internet. HT TP (Hyper Text Transfer Protocol)
is used to transfer HTML files. HTML files
are stored on the server computer's hard disk.

In this paper we have performed pattern
matching tests on HTML files. 31 different
pattern matching algorithms have been tested
and performance results have been given in
following sections. We focused on matching
single patterns in our trials. When we viewed
the previous works of pattern matching, we
found that there were no studies in HTML files.

PATTERN MATCHING ALGORTHMS

There are many studies in the literature
based on pattern matching algorithms. Pattern
matching algorithms are used in researches of
many fields like biologic sequences,
information retrieval, image processing etc.
Some well-known pattern matching algorithms
are described below.

Horspool Algorithm:

The bad-character shift used in the Boyer-
Moore algorithm [2] is not very efficient for
small alphabets, but when the alphabet is large
compared with the length of the pattern, as it is
often the case with the ASCII table and
ordinary searches made under a text editor, it
becomes very useful.

Using it alone produces a very efficient
algorithm in practice. Horspool proposed to
use only the bad-character shift of the
rightmost character of the window to compute
the shifts in the Boyer-Moore algorithm. [6]

Quick Search Algorithm:

The Quick Search algorithm uses only the
bad-character shift table [2]. After an attempt
where the window is positioned on the text
factor y[j .. jtm-1], the length of the shift is at
least equal to one. So, the character y[j+m] is
necessarily involved in the next attempt, and

International Scientific Conference “UNITECH 2017 — Gabrovo 11-279



thus can be used for the bad-character shift of
the current attempt [7].

Skip Search Algorithm:

For each character of the alphabet, a bucket
collects all the positions of that character in x.
When a character occurs k times in the pattern,
there are k corresponding positions in the
bucket of the character. When the word is
much shorter than the alphabet, many buckets
are empty. [§]

Simon Algorithm:

Simon indicates that the underlying
automaton of Knuth-Moris-Pratt algorithm can
be completed in an efficient way [9].

All algorithms are described in a web page
http://www-igm.univ-mlv.fr/~lecrog/string/.
By using single pattern matching manner, we

Table 1. Algorithms used in this study

Apostolico Crochemore

Apostolico Giancarlo

Backward Nondeterministic Dawg Matching

Backward Oracle Matching

Boyer Moore

Brute Force

Colussi

Deterministic Finite Automaton

Forward Dawg Matching

Galil Giancarlo

Horspool

Karp Rabin

KMP Skip Search

Knuth Morris Pratt

Maximal Shift

Morris Pratt

Not So Naive

Optimal Mismatch

Quick Search

Raita

Reverse Colussi

Reverse Factor

Shift Or

Simon

Skip Search

Smith

String Matching on Ordered Alphabets

Tuned Boyer Moore

Turbo BM

Turbo Reverse Factor

Zhu Takaoka

Table 2. Information about dataset

Size of Files Pattern Size

(KB) (Character Size)
Average 142.8 33.9
Minimum 21.1 18
Maximum 905.9 127

have tested 31 different pattern matching
algorithms which are given in Table 1.

EXPERIMENTS

5 web pages for every 20 different online
newspapers such as Milliyet, Sabah, Pravda,
Corriere, Dbalears, Dnevnik, JapanTimes etc.
are used in the experiments. At least two
patterns have been prepared for each domain.
Then, these patterns are tested five times for
the relevant domains in 31 different
algorithms. Table 2 gives information about
file sizes of web pages and character sizes of
rules in dataset.

Tags with different lengths are searched in
files and each file has different size. All
durations are noted to calculate average
durations for each algorithm. Besides this
average lengths of tags are shown in Table 3
where pattern matching results are take place.
We have parsed 5 web pages in 20 domains
separately. So we have used 100 HTML files
to obtain results. In each file we have matched
44 patterns.

In addition to this, preprocessing and
searching times are taken in each file for each
algorithm. We also give the average results of
preprocessing and searching times for
algorithms in Table 3. It is obvious that the
pattern matching processes of the algorithms
which have no preprocessing phase are same
with the searching time. On the other hand, the
algorithms which have preprocessing phase
have duration values as sum of searching and
preprocessing phases durations.

We carried out our experiments on an Intel
Core 15-3.2Ghz 8 GB RAM computer with
Windows 10 operating system. We have
developed the test software on .NET 4.5.2
framework C# Programming Language.

The preprocessing of an algorithm consists
of collecting some information like statistical

11-280 International Scientific Conference “UNITECH 2017 — Gabrovo



data or character ordering about pattern and
making a model to search for.

In our experiments, best pattern matching
score belongs to Skip Search algorithm. Also
this algorithm has little preprocessing with
0.002 ms and the searching time with 0.168
ms. Although the Horspool algorithm has a
little poor preprocessing results with 0.222 ms,
the best algorithm is in searching with 0.081
ms. In the Horspool algorithm, once the
document is prepared for searching, it can be
searched many times quickly.

Karp Rabin, Morris Pratt, Apostolico
Crochemore and Knuth Morris Pratt are little

Table 3. Algorithms used in this study

preprocessing time but their searching results
are average. In total results, Tuned Boyer
Moore, Horspool, Backward Nondeterministic
Dawg Matching, Optimal Mismatch, Raita,
Boyer Moore, Maximal Shift, KMP Skip
Search, Quick Search, Turbo BM and
Backward Oracle Matching algorithms have
very close duration values.

BruteForce, String Matching on Ordered
Alphabets and Not So Naive algorithms are
not preprocessing time but their searching
results are 0.676, 1.079 and 0.522,
respectively. The top results of best 12
algorithms are given in the Fig. 1.

PreProcessing Search

Algorithm Time Time Total
Apostolico Crochemore 0.001 0.973 0.974
Apostolico Giancarlo 0.225 0.935 1.160
Backward Nondeterministic Dawg Matching 0.193 0.111 0.304
Backward Oracle Matching 0.005 0.384 0.390
Boyer Moore 0.226 0.102 0.328
Brute Force 0.000 0.676 0.676
Colussi 0.003 1.521 1.525
Deterministic Finite Automaton 26.402 2.846 29.248
Forward Dawg Matching 34.381 7.546 41.928
Galil Giancarlo 0.004 1.683 1.687
Horspool 0.222 0.081 0.302
Karp Rabin 0.001 1.168 1.169
KMP Skip Search 0.190 0.175 0.365
Knuth Morris Pratt 0.001 0.979 0.981
Maximal Shift 0.239 0.093 0.332
Morris Pratt 0.001 0.977 0.978
Not So Naive 0.000 0.521 0.522
Optimal Mismatch 0.228 0.091 0.319
Quick Search 0.221 0.149 0.370
Raita 0.239 0.083 0.322
Reverse Colussi 32.005 0.115 32.121
Reverse Factor 35.864 0.279 36.143
Shift Or 0.271 0.717 0.988
Simon 0.002 1.434 1.436
Skip Search 0.002 0.168 0.170
Smith 0.426 0.161 0.587
String Matchingon Ordered Alphabets 0.000 1.079 1.079
Tuned Boyer Moore 0.215 0.082 0.297
Turbo BM 0.223 0.148 0.371
Turbo Reverse Factor 34.604 0.334 34.938
Two Way 0.002 0.796 0.798

International Scientific Conference “UNITECH 2017 — Gabrovo



CONCLUSION

Pattern matching on strings is an important
subject which has been studied several times.
Many algorithms have been developed to search
for patterns through the strings. In this paper, we
want to observe the performances of pattern
matching algorithms on HTML files. A lot of
trials have been done to have meaningful results.
Experimental results show that different pattern
matching algorithms can retrieve data from web
pages for different purposes. It would be useful
to use this feature in retrieving only demanded
data from web pages. All codes are an open-
source and available via the github:

https://github.com/erdincuzun/SMA.NET.

ACKNOWLEDGEMENTS

The authors acknowledge the support
received from the Namik Kemal University
Research Fund.

REFERENCE

[1] Knuth D.E., Morris J.H., Pratt V.R., “Fast
Pattern Matching in Strings”, SIAM Journal on
Computing, Volume 6, Issue 2, pp. 323-350

[2] Boyer R.S.; Moore J.S., “A fast string
searching algorithm”. Commun. ACM 1977, 20,
pp . 762-772.

BackwardOracleMatching

TurboBM

QuickSearch

KMPSkipSearch

MaximalShift

BoyerMoore

Raita

OptimalMismatch
BackwardNondeterministicDawgMatching
Horspool

[3] Aho A.V.; Corasick M.J. “Efficient string
matching”, An aid to bibliographic search.
Commun. ACM 1975, 18, pp. 333-340.

[4] Manber Wu, S.; Manber, U. “A Fast Algorithm
for Multi-Pattern Searching”; Technical Report
TR-94-17; Department of Computer Science,
University of Arizona: Tucson, AZ, USA, 1994

[6] Horspool R.N., “Practical fast searching in
strings”, Software - Practice & Experience,
1980,10(6), pp. 501-506.

[7] Sunday D.M., “A very fast substring search
algorithm”, Communications of the ACM. 1990,
33(8), pp.132-142

[8] Charras C., Lecroq T., Pehousek J.D., “A very
fast string matching algorithm for small alphabets
and long patterns”, in Proceedings of the 9th
Annual Symposium on Combinatorial Pattern
Matching, M. Farach-Colton ed., Piscataway, New
Jersey, Lecture Notes in Computer Science 1448,
1998, pp 55-64, Springer-Verlag, Berlin.

[5] Lee C.L., Yang T.H., “A Flexible Pattern-
Matching Algorithm for Network Intrusion
Detection Systems Using Multi-Core Processors”,
Algorithms 2017, 10(2), 58

[9] Simon, 1., 1994, String matching algorithms
and automata, in Results and Trends in Theoretical
Computer Science, Graz, Austria, Karhumaiki,
Maurer and Rozenberg ed., pp 386-395, Lecture
Notes in Computer Science 814, Springer Verlag.

11-282

TunedBoyerMoore
SkipSearch

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0350 0.400 0.450

W preProcessTime M Search Time

Fig. 1. The top results of best 12 algorithms

International Scientific Conference “UNITECH 2017 — Gabrovo



	INTRODUCTION
	PATTERN MATCHING ALGORTHMS
	EXPERIMENTS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCE

