
International Scientific Conference “UNITECH 2017” – Gabrovo II-275

INTERNATIONAL SCIENTIFIC CONFERENCE
17-18 November 2017, GABROVO

EVALUATION OF HAP, ANGLESHARP AND HTMLDOCUMENT IN WEB

CONTENT EXTRACTION

Erdinç Uzun H. Nusret Buluş
Namık Kemal University Namık Kemal University

Alpay Doruk Erkan Özhan
Namık Kemal University Namık Kemal University

Abstract
With the DOM, programming languages can access and change all the HTML elements of a web page. There are

several libraries for instantiating the DOM. In this study, we compare three different well-known .NET libraries,
including HAP (Html Agility Pack), AngleSharp and MS_HtmlDocument to extract content from web pages. The
experimental results indicate that AngleSharp achieves the best results with average 5.54 ms for preprocessing of the
DOM and average 0.46 ms for extracting of a content from the DOM.

Keywords: HTML, DOM, Web Extraction Performance, .NET C#

INTRODUCTION

Over the years and with the increase of
internet usage, the amount of contents such as
main text, summary text, user information,
date information, advertisements, menus and
related links on a web page has also increased.
Web content extraction [1] is the process of
accessing required contents from web
documents. This process is important for
indexing and storage operations on the
computer. In this way, the performance of
search process can be accelerated. In this
study, we will explain how to access this
content via ID and CLASS. Moreover, three
libraries that can be used extraction process
are compared.

Web content extraction methods can be
classified into three classes: wrapper-based
methods[2], DOM (Document Object Model)-
based method [3] and Machine learning-based
methods [4]. Wrapper in web content
extraction is a program that extracts content of
a particular information from web pages.
DOM-based methods utilize structure, tags and
attributes of HTML. Machine learning-based
methods are on state-of-the-art machine
learning algorithm and these methods require
labeled data obtained from the DOM. This

paper focuses on creation and search time of
DOM.

In the DOM, everything is a node
containing nodes, tags, attributes, texts.
Moreover, everything including main text,
summary text, graphics, audio, video, links,
advertisements, contents, etc. on the web page
is in a specific node. In all browsers, when an
HTML document is loaded into a web
browser, the DOM is created. With JavaScript
scripting language, you can reach all the nodes
by using the DOM. In this study, three
libraries included HAP [6], AngleSharp [7],
MS_HTMLDocument [8] developed to reach
the DOM via a programming language .NET
(C#) will be compared.

HIERARCHY OF DOM

A web page is a text document included
HTML tags, HTML attributes, scripts and
contents. This document is parsed by a web
browser to display results in the browser
window. After parsing, the DOM is created.
The DOM is an object-oriented representation
of the web page, which can be modified with a
scripting language like JavaScript and
programming languages such as C#, Java,
Phyton and etc.

 2017

International Scientific Conference “UNITECH 2017” – Gabrovo II-276

Fig. 1. Relationship between the DOM and the web page

There is a relationship between the DOM

and the web page as shown in Fig. 1. For
example, <h1> is an HTML element that
defines the most important heading. Moreover,
this element have an attribute (itemprop) and
value of attribute (headline) that provide
additional information for the element. There
are a lot of HTML elements such as <section>,
<div>, <aside>, <h3>, <p> and etc. in a web
page. Fig. 1 shows only a little part of a web
page. Additionally, these elements have
attributes such as id, class, itemprop, style and
etc. id and class are widely used attributes
useful for applying styles and manipulating an
element with DOM and JavaScript. These
information can be used for extraction process.

Web pages in a web domain have similar
HTML elements. When the appropriate
element is selected from a web page, it can be
used to extract other web pages of domain. In
experiments, we have downloaded 100
different web pages for 20 different web
domain. Moreover, we have selected 38
different elements for obtaining required web
content. Table 1 indicates example elements

(as rules) for Fig. 1.

WEB EXTRACTION LIBRARIES
In web browsers, JavaScript is used for

accessing or manipulating an element.
However, in programming languages there are
several libraries for this task. In this paper, we
utilize three different libraries included HAP
(Html Agility Pack), AngleSharp and
MS_HtmlDocument in .Net framework.

In HAP, a DOM is first created with HTML
Parser of HAP. Then, selectors allow you to
reach elements from the DOM by using the
XPath expression obtained from rules (see
Code 1). XPath, is a W3C Recommendation,
uses "path like" syntax to identify elements in

Table 1. An example rules for extraction

HTML Element Description
<h1 itemprop="headline"> Heading
<div itemprop="articleBody"
…>

Main Text

Code 1. Extraction with HAP
public List<string> Extract_with_HAP(string tagname,
string source){
string tagname_xpath = ToXPath(tagname);
List<string> list_sonuc = new List<string>();
HtmlDocument htmlDoc = new HtmlDocument();
htmlDoc.LoadHtml(source);
HtmlNodeCollection _htc =
htmlDoc.DocumentNode.SelectNodes(tagname_xpath);
if (_htc != null){

foreach (HtmlNode node in _htc)
 list_sonuc.Add(node.InnerHtml);

}
else return null;
return list_sonuc;
}

International Scientific Conference “UNITECH 2017” – Gabrovo II-277

a web page. We have developed a method that
converts HTML element to XPath expression
(see Code 2). For example, <h1
itemprop="headline"> converts to XPath
expression like //h1[@itemprop='headline'].

In Code 1 and 2, HtmlDocument is class of
HAP. LoadHTML method loads given HTML
document to instance of HtmlDocument.
DocumentNode.SelectNodes method return
nodes for a given HTML. In code 1, only one
node is returned. node.Attributes.Select
method prepare a string that contains key and
value of attributes, respectively.

AngleSharp has angle brackets parser
library to construct a DOM based on the
official W3C specifications. AngleSharp
exposes all DOM lists and allows you to use
LINQ (Language-Integrated Query). LINQ is a

.NET Framework component that adds native
data querying capabilities to .NET languages.

Code 2. Converting HTML Element to XPath
Public string ToXPath(string tagName){
 HtmlDocument htmlDoc = new HtmlDocument();
 htmlDoc.LoadHtml(tagName);
 HtmlNode node =

htmlDoc.DocumentNode.SelectNodes("//*")[0];
 var attributes = node.Attributes.Any() ? "[" +

string.Join(" and ", node.Attributes.Select(o => "@"
+ o.Name + "='" + o.Value + "'")) + "]" : "";

 return "//" + node.Name + attributes;
}

Code 4. Extraction with MS HtmlDocument
public static List<string>
Extract_Tag_with_HTMLDocument(string tagName,
string source){

List<string[]> res =
TagProcessing.NodenameAndAttributes(tagName);

List<string> list_sonuc = new List<string>();
HTMLDocument doc = new HTMLDocument();
IHTMLDocument2 doc2 = (IHTMLDocument2)doc;
doc2.clear();
doc2.designMode = "On";
doc2.write(source);
if (null != doc){
 string[] nodename = res[0];
 nodename[0] = nodename[0].ToUpper();
 for (int i = 1; i < res.Count; i++){
 string[] att = res[i];
 if (att[0]=="id"){

list_sonuc.Add(doc.getElementById(att[1]).innerHTML);
 return list_sonuc;
 }
}

foreach (IHTMLElement element in
doc.getElementsByTagName(nodename[0])){

 bool sonuc = true;
 for (int i = 1; i < res.Count; i++){
 string[] att = res[i];
 if (att[0] == "class"){
 if(element.className != att[1]){
 sonuc = false;
 break;
 }
 }
 else{
 if(element.innerHTML != null){
 string tag_temp =

element.outerHTML.Substring(0,
element.outerHTML.IndexOf(">"));

 if (!(tag_temp.Contains(att[0]) &&
tag_temp.Contains(att[1]))){

 sonuc = false;
 break;
 }
 }
 else{
 sonuc = false;
 break;
 }
 }
 }
 if (sonuc)
 list_sonuc.Add(element.innerHTML);
 }
 }
else return null;

return list_sonuc;
}

Code 3. Extraction with AngleSharp
public List<string> Extract_Tag_with_AngleSharp(
string tagName, string source){
List<string[]> res =
NodenameAndAttributes(tagName);
List<string> list_sonuc = new List<string>();
var parser = new HtmlParser();
var document = parser.Parse(source);

if (document != null){
 string[] nodename = res[0];
 List<AngleSharp.Dom.IElement> temp =

document.All.Where(m => m.LocalName ==
nodename[0]).ToList();

 for (int i = 1; i < res.Count; i++){
 string[] att = res[i];
 temp = temp.Where(m => m.Attributes[att[0]] !=

null && m.Attributes[att[0]].Value == att[1]).ToList();
 }
if (temp != null){
 foreach (AngleSharp.Dom.IElement node in temp)
 list_sonuc.Add(node.InnerHtml);
else return null;
}
else return null;

return list_sonuc;
}

International Scientific Conference “UNITECH 2017” – Gabrovo II-278

 In Code 3, NodenameAndAttributes
function returns node name and attributes of a
tag to the string list (res). HtmlParser is main
class of AngleSharp. It has methods which
carry the parsed DOM. Parse function creates
the DOM. All property of document.All
returns all nodes that are contained in a web
page and where function in
document.All.Where is used for efficient
extraction with LINQ statements.

MS HtmlDocument provides a wrapper
around the DOM. Then, you can use
HTMLDocument methods for accessing the
desired element. In .NET, HtmlDocument is
the base class of IHTMLDocument2 so we
create doc2 instance for DOM. Write function
of IHTMLDocument2 is utilized for
constructing DOM. Then, in searching if
attribute is ID, the function returns the result
of getElementById. Otherwise, the function
takes all nodes into account with the result of
getElementsByTagName. In this case, if all
attributes and their values are equal, the
function adds this content to the list.

EXPERIMENTS

5 web pages for every 20 different online
newspapers such as Milliyet, Sabah, Pravda,
Corriere, Dbalears, Dnevnik, JapanTimes are
used in the experiments. At least two rules
(Html Element) have been prepared for each
domain. Then, these rules are tested five times
for the relevant domains in three different
libraries. Table 2 gives information about file
size of web pages and character size of rules in
dataset. Table 3 indicates average result of
three different libraries.

Timing performance tests are done at Core
i5-3.2Ghz with 8GB memory configurations.
In Table 3, creation times and extraction times
of DOM are examined for three libraries.
AngleSharp, allows you to use LINQ, has the
best results with average 5.54 ms for
preprocessing of the DOM and average 0.46
ms for extracting of a content from the DOM.

MS_HtmlDocument has the slowest search
results with 115.30 ms because it does not
have a special search function.

CONCLUSION

DOM creation and search on the DOM are
important issue in terms of web content
extraction. In this study, we have introduced
three different libraries included HAP,
AngleSharp and MS_HtmlDocument used by
the .NET languages. The experimental results
show that AngleSharp is a better library than
the others.

We are considering using AngleSharp when
we need DOM for web content extraction. All
codes are an open-source and available via the
github:

https://github.com/erdincuzun/SMA.NET.

ACKNOWLEDGEMENTS
The authors acknowledge the support

received from the Namık Kemal University
Research Fund.

REFERENCE
[1] Rahman, A.F.R., Alam, H. and Hartono, R.,

“Content extraction from HTML documents”,
International workshop on Web document
Analysis, pp.7-10, 2001.

[2] Flesca, S., Manco, G., Masciari, E., Rende, E.,
Tagarelli, A. “Web wrapper induction: a brief
survey”, In: AI Communications, vol. 17, pp.
57–61. IOS Press, Amsterdam, 2004.

[3] Álvarez-Sabucedo, L. M., Anido-Rifón, L. E.
and Santos-Gago, J. M., “Reusing web
contents: a DOM approach”, Softw: Pract.
Exper., 39: 299–314. doi:10.1002/spe.901,
2009.

[4] Fu, L., Meng, Y., Xia Y. and Yu, H., “Web
Content Extraction based on Webpage Layout
Analysis”, Second International Conference on
Information Technology and Computer
Science, Kiev, 2010, pp. 40-43, 2010.

[6] http://html-agility-pack.net/
[7] https://github.com/AngleSharp/AngleSharp
[8] https://msdn.microsoft.com/tr-

tr/library/system.windows.forms.htmldocument
(v=vs.110).aspx

Table 2. Information about dataset

 Size of Files
(KB)

Number of Tags
(Character Size)

Average 142.8 33.9
Minimum 21.1 18
Maximum 905.9 127

Table 3. Results of tree libraries

 Preprocessing
(ms)

Extracting
(ms)

HAP 9.79 0.51
AngleSharp 5.54 0.46
MS_HtmlDocument 28.63 115.30

	INTRODUCTION
	HIERARCHY OF DOM
	WEB EXTRACTION LIBRARIES
	EXPERIMENTS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCE

