
ISSN 1310-8271

JOURNAL
OF THE TECHNICAL UNIVERSITY - SOFIA

PLOVDIV BRANCH, BULGARIA

FUNDAMENTAL SCIENCES 
AND 

APPLICATIONS

Volume 24, 2018



 

Copyright  by Technical University - Sofia, Plovdiv branch, Bulgaria  
 

OBJECT-BASED ENTITY RELATIONSHIP 
DIAGRAM DRAWING LIBRARY: ENTREL.JS 

ERDİNÇ UZUN, TARIK YERLİKAYA, OĞUZ KIRAT 

Abstract: An entity relationship diagram (ERD) is a visual helper for database design. 
ERD gives information about the relations of entity sets and the logical structure of 
databases. In this paper, we introduce an open source JavaScript Library named EntRel.JS 
in order to design sophisticated ERDs by writing simple codes. This library, which we have 
developed to facilitate this task, is based on our obfc.js library. It generates a SVG output 
on the client side for modern browsers. The SVG output provides storage efficiency when 
compared to existing ERD drawings created with existing drawing applications. Moreover, 
we present our animation library to gain action for elements in your web page.  

Key words: Entity relationship diagrams, SVG, JavaScript 

1. Introduction 
The internet has been evolving for over 25 

years with some standards including HTML 
(HyperText Markup Language), CSS (Cascading 
Style Sheets), JavaScript, XML (eXtensible Markup 
Language) and so on. These standards are shared by 
the W3C throughout the world, and browser 
developers release updates to support these 
standards. The W3C [1] continues to set standards 
on a number of different issues. In this study, one of 
these standards is SVG (Scalable Vector Graphics) 
[2] that is used for drawing entity relationship 
diagrams (ERDs) and JavaScript language is used 
for creating these ERDs with simple codes. 

ER modeling was developed for increasing 
the clarity of database design by Peter Chen[3]. 
This model is the result for systematic data analysis 
of system. It is usually drawn in a graphical form 
named ER diagrams including entities, their 
attributes and relationships between entities. This 
model is typically implemented as a database. 
Software developers and database designers can 
easily discuss the design of database and software 
over the ER diagram. Therefore, this subject is the 
basis of the database courses. ER design can be 
created very quickly with our library introduced in 
this study. 

The ERD drawing process can be done on 
the server or client side by using the drawing 
applications including Microsoft Visio, OpenOffice 
/ LibreOffice Draw, Dia, Diagramly and so on. The 
drawing file stored on the server side is displayed in 
the browser in the <img> element. On the other 
hand, it can still be prepared on the server side and 

displayed in the CANVAS [4] or SVG elements 
used for drawing graphics in HTML 5. In this study, 
the SVG is suitable for our study instead of 
CANVAS. CANVAS is typically used in web-
based games, while it allows the drawing process 
with JavaScript codes. Because SVG is a vector-
based system, the browser is not affected by the 
magnification. It was chosen for this reason. It can 
also be drawn on the client side by using 
JavaScript’s advantage and holding fewer code on 
the server side. This makes the server load lighter 
and the drawing works are made on the client side. 
However, with the JavaScript file loaded once, it is 
only necessary for utilizing the AJAX 
(asynchronous JavaScript and XML) [5] in order to 
upload the required code. AJAX improves the 
bandwidth performance of web-based applications. 
In this study, the object creation codes are stored in 
the server, and drawing with the EntRel.JS library is 
performed on the client side. 

The EntRel.JS library (Entity Relationship) 
is based on the obfc.JS library (Object-Based Flow 
Charts) [6] that we develop is an object-based 
library for drawing SVG flow charts across modern 
web browsers.   It makes easily to construct objects, 
links and connections. Moreover, it dispatches a 
click event when an object or a line is clicked and 
descriptions can be added for all clicks. The 
EntRel.JS allows you to design complex ERDs by 
writing short codes. SVG output is parsed from 
these texts and the SVG output is produced on the 
client side. 

Technologies such as SVG, JavaScript and 
AJAX are used in many different subjects such as 
numerical graphics, networking, geography, 

Copyright © 2018 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 ISSN 1310 - 8271

© Journal of the Technical University - Sofia 
    Plovdiv branch, Bulgaria
  “Fundamental Sciences and Applications”
    Vol. 24, 2018



 

medicine and electricity. For example, Saito and 
Ouyang [7] indicate how to draw data on the client 
side with ChartML. They use SVG and JavaScript 
in the client side and they produce graphs. Some 
studies [8-11] focus on how network topologies can 
be displayed on the browser by using SVG, 
JavaScript and AJAX. Yin and Zang [12] describe 
SVG and AJAX technologies in the Web 
geographic Information system. Fang and et al. [13] 
explain the use of these technologies in local 
thermal power plant management. Birr and et al. 
[14] introduces how three-dimensional medical data 
can be demonstrated in the Web environment. 
Alhirabi and Butler [15] perform the gene notation 
using SVG.  

This study presents a JavaScript Library to 
create ERDs with objects. Moreover, you can also 
easily link objects to each other. Draw function of 
these objects produces a SVG output in browsers. 
Moreover, we introduce an animation library 
(animation.JS) that we developed.  

2. obfc.JS library 
Before explaining the EntRel.JS library, we 

give information about obfc.JS library that we 
developed earlier. obfc.JS has 24 different SVG 
shapes for drawing flow charts. In this section, we 
will describe the most basic features of this library. 

2.1. Creating an object 
Before creating an object, you add obfc.js 

file and SVG element to body of a web page. Then, 
you connect library to the id of the SVG element. 
Code 1 indicates these lines. 
 
Code 1. Preparing library and creating an object 
<script src="obfc.min.js"></script> 
<svg id="demo" width="600" height="700"> 
</svg> 
<script> 
prepare_SVG("demo"); 
var object2 = add_theObject(new Process(300, 
150, 1, ["Line 1", "Line 2"], 10)); 
</script> 
 

To draw an object, add_theObject function 
can be used for the given SVG element. 
add_theObject is a function that adds the object into 
a given SVG element and returns this object. This 
returned object is used for drawing lines between 
two objects. There are 24 different SVG objects in 
obfc.JS. “Process” is the one of objects from 24 
different objects. There are 9 parameters for 
creating an object. First two parameters are 
required, others are optimal. 

Object_Name(_middle_x, _middle_y, _size, 
_text, _text_size, _description, _fill_color, 
_stroke_color, _text_color); 

 _middle_x and middle_y: centre of the object. 
(Required) 

 _size: For example, default size of a process 
object width is 125 and height is 50. _size value 
is multiplied by these values. 

 _text and _text_size: Text is written in the 
center of an object. This parameter can be 
defined string value or array[“”, “”…]. If your 
text is too long, you can use array for creating 
lines. 

 _description: These value can be coded in 
HTML format. These value is displayed in a 
HTML element that contains “desc” id after 
clicking an object or a line. 

 _fill_color: Default value is white. But, the 
object color can be determined with this 
parameter. 

 _stroke_color: Default value is black. 
 _text_color: Default value is black. 

2.1. Creating lines between objects 
After creating all objects, objects can be 

linked by using draw_theLine function. 
 
Code 2. Creating lines between two objects 
<script> 
…. 
var o_line1 = draw_theLine(new Line(object1, 
object2)); 
</script> 
 

 

Fig. 1.  Output of Code 2 

Line is a function that determines the path 
for given two objects and their positions. This 
function has 9 parameters. First two parameter is 
required and others are optimal.  

Line(object1, object2, position1, position2, 
_text, _text_size, _description, _stroke_color, 
_text_color); 

 object1 ve object2: are variables that is defined 
in the previous section. 

 94 



 

Copyright  by Technical University - Sofia, Plovdiv branch, Bulgaria  
 

 position1 and position2: are position 
information of objects. There are four positions 
for all shapes. Top=0, Bottom=1, Left=2 and 
Right=3. But, when these values are not entered 
or entered “-1”, this function automatically 
determines these position by calculating 
differences between all unused positions. 
(Unused position means that this position is 
used for creating lines) 

 _text and _text_size: text in line. This function 
selects the longest sub-line for writing text. 

 description, _stroke_color, _text_color: (same 
with previous section) 

Moreover, you can determine connection points 
manually as shown in Code 3. 
 
Code 3.  
<script> 
var object1 = add_theObject(new Process(100, 
75, 1, "Hello 1", 12)); 
var object2 = add_theObject(new Process(300, 
150, 1, "Hello 2", 12)); 
var o_line1 = draw_theLine(new Line(object1, 
object2, 0, 1)); 
var o_line2 = draw_theLine(new Line(object1, 
object2, 2, 2)); 
var o_line3 = draw_theLine(new Line(object1, 
object2, 1, 3)); 
</script> 
 

 

Fig. 2.  Output of Code 3 

In this example, position informations are 
added to link two objects. For example, 0 means top 
of object1 and 1 means bottom of object2. There are 
three lines in this example. Moreover, obfc.js has 

jumping mechanism in collision of lines. For more 
information, you can visit the following web page:  

https://www.e-adys.com/obfc-js/object-based-
flow-charts-obfc-js/ 

3. EntRel.JS 
EntRel.JS is JavaScript Library for creating 

ERDs with simple JavaScript methods. Figure 3 
gives information about the location of the libraries 
in the Web. Libraries of obfc.JS, EntRel.JS and 
Animation.JS takes the drawing code from a server 
and parse these codes for drawing into an SVG 
element. The file sizes of bfc.JS, EntRel.JS and 
Animation.JS are 78 KB, 3.85 KB and 3.62 KB. 
The first installation of these libraries is loaded into 
the browser cache, and these libraries are not 
updated on other requests. 

There are two main classes for creating 
diagrams as FlatLine and Entity. Entity class 
derived from Process class of obfc.js. For better 
understanding this object, you can examine Section 
2.1. 

Entity(_middle_x, _middle_y, _size, _text, 
_attributes, _text_size, _weak, _description, 
_fill_color, _stroke_color, _text_color) 

The fifth parameter contain extra 
information about attributes of an entity. You can 
define 8 attribute in array format for an entity. For 
example: 

[null, “AuthorID(PK)”, “AuthorName”, 
“AuthorSurName”] 

The first attribute contain a null value so 
that it can be drawn. The first four attributes are in 
top and others are in bottom. Weak parameter is 
used for a weak entity that cannot be uniquely 
identified by its attributes alone. 

FlatLine connects the objects. FlatLine class 
derived from Line class of obfc.js. FlatLine don’t 
contain an arrow in drawing. Code 4 is an example 
for Entity and FlatLine. Moreover, Fig 4 is output 
of Code 4.  

 

 

 

obfc.js 
entrel.js 
animation.js 
…Script Codes… 

Server Side Client Side 

Web Browsers 
Mozilla 
Chrome 
IE 
Safari 
(A browser with 
SVG support) 

obfc.js  
entrel.js 
animation.js 

ERDs Script 
Codes 

SVG Output  
HTTP Request 

XMLHTTP 
Request 

AJAX 

 95 



 

Fig. 3.  Location of the EntRel.JS and Animation.JS in the Web 

Code 4. An example ERD 
<script> 
prepare_SVG("demo"); 
var object1 = add_theObject(new Entity(300, 
350, 0.75, "Books", [null, null, null, null, null, 
"BookID(PK)", "Title"], 16)); 
var object2 = add_theObject(new Entity(65, 150, 
0.75, "Authors", [null, "AID(PK)", "AName", 
"ASurname"], 16)); 
var object3 = add_theObject(new Entity(300, 
150, 0.75, "Types", [null, "TID(PK)", "TName"], 
16)); 
var object4 = add_theObject(new Entity(500, 
150, 0.75, "Publishers", [null, "PID(PK)", 
"PName", "Location"], 16)); 
var object5 = add_theObject(new Decision(65, 
250, 0.75, ["R1"], 12)); 
var object6 = add_theObject(new Decision(300, 
250, 0.75, ["R2"], 12)); 
var object7 = add_theObject(new Decision(500, 
250, 0.75, ["R3"], 12)); 

 
var o_line1 = draw_theLine(new 
FlatLine(object2, object5, null, null, "N")); 
var o_line2 = draw_theLine(new 
FlatLine(object5, object1, 1, 2, "N")); 
var o_line3 = draw_theLine(new 

FlatLine(object3, object6, null, null, "N")); 
var o_line4 = draw_theLine(new 
FlatLine(object6, object1, null, null, "N")); 
var o_line5 = draw_theLine(new 
FlatLine(object4, object7, null, null, "N")); 
var o_line6 = draw_theLine(new 
FlatLine(object7, object1, 1, 3, "1")); 
</script> 
 
 

 

 

Fig. 4.  Output of Code 3 

In Code 4, (PK) keyword defines a primary 
key of an entity. Moreover, (DE) keyword defines 

derived attributes and (MV) keyword is for 
multivalued attributes. There are four entity objects 

 96 



 

Copyright  by Technical University - Sofia, Plovdiv branch, Bulgaria  
 

and three Decision objects created from obfc.JS 
library. And these objects link with six FlatLine. 
Now let's add animation to this drawing. 

4. animation.JS 
With animation.js, you can easily animate 

your a desired element of child elements in your 
web page. Navigation bar of this animation contains 
links: Previous, Next, Show All, Hide All, Start 
Animation, and Stop Animation. Code 5 is a simple 
animation code. 
 
Code 5. Creating an animation a web page 
<script src="animation.min.js"></script> 
<script> 
initializeAnimation(null, ".animation", "div,p", 
"#masthead,#secondary"); 
</script> 
 
 Add animation.min.js your web page, then call 

initializeAnimation method for configuration of 
the animation. 

 The first parameter of this method is the 
number of elements. But this parameter is used 
by other libraries: obfc.js and entrel.js. 

 The second parameter is the base element of 
animation. You can use a selector for setting 
this parameter. 

 Third parameter is inner elements in the base 
element. You can use more than one selector for 
selecting the desired elements. 

 Fourth parameters is used to set opacity of the 
selected elements. 

Moreover, you can set time interval for animation 
and opacity for elements. For example: (Append the 
following code to Code 5) 

opacity = 0.1; //opacity of elements 
timeInterval = 3000; //3 seconds 

For creating links for navigating animation in a 
web page, you can append Code 6 for your web 
page. 

 
Code 6. Navigation bar 
<div id="anavbar" class="anavbar" 
style="display:none"> 
<ul class="horizontal"> 
<li><a id="pre">Previous</a></li> 
<li><a id="next">Next</a> </li> 
<li><a id="show">Show All</a> </li> 
<li><a id="hide">Hide All</a> </li> 
<li><a id="start">Start Animation</a> </li> 
<li><a id="stop">Stop Animation</a> </li> 
</ul> 
</div> 
 

5. The use of obfc.JS and EntReel.JS with  
amination.JS 
For creating animations, you can group the 

objects created by obfc.JS and EntReel.JS using an 
array. If two objects are together, these objects can 
be grouped together. (For example ([object5, 
object2])). You can append the following codes to 
Code 4 for creating animation in Fig 4.  

var groups = [object1, [object5, object2], 
[o_line1, o_line2], [object6, object3], [o_line3, 
o_line4], [object7, object4], [o_line5, o_line6]]; 
prepareClassforAnimation(groups); 
initializeAnimation(groups.length - 1); 

prepareClassforAnimation method prepares 
objects for animation. initializeAnimation method 
starts animation. For testing animation, you can 
visit the following web page:  

https://www.e-adys.com/web_tasarimi_programlama/entrel-js-
creating-entity-relationship-diagrams-with-javascript-and-svg/ 
 
 

6. Conclusion 
In this study, the open source EntRel.JS and 

animation.JS Libraries that we developed and the 
functions of these libraries to draw ERDs in the 
Web environment are introduced. Thanks to this 
library, drawings are made quickly with very little 
code. Unlike other drawing applications, the links 
between shapes are automatically feasible. SVG 
output occupies very little space according to the 
other image formats. 

In future studies, we plan to develop a 
design library that enables drawing and drag-and-
drop functionality through the Web page without 
writing codes. We are also aiming to group some 
designs and share them in a web environment. 
Finally, we intend to develop new libraries for 
different subjects including logic circuits, data 
structures, database management systems, software 
engineering and system analysis in order to draw 
different shapes.  

Additional Information 

All codes are open-source. Web addresses 
and help documents are as follows. 

 https://github.com/erdincuzun/obfc.js 
 https://github.com/erdincuzun/entrel.js 
 https://github.com/erdincuzun/Animation.js 
 https://www.e-adys.com/ 

  

 97 



 

REFERENCES 

1. World Wide Web Consortium, 
https://www.w3.org/, (14.06.2018)  

2. Scalable Vector Graphics, 
https://www.w3.org/Graphics/SVG/, 
(14.06.2018) 

3. Chen, P. (1976). The Entity-Relationship 
Model - Toward a Unified View of Data. ACM 
Transactions on Database Systems. 1 (1): 9–
36. 

4. HTML 5 Canvas, 
https://www.w3.org/TR/2dcontext/,  
(14.06.2018) 

5. AJAX, https://developer.mozilla.org/en-
US/docs/Web/Guide/AJAX, (14.06.2018) 

6. Uzun, E., Buluş, H. N. (2017). Object-based 
flowchart drawing library. International 
Conference on Computer Science and 
Engineering (UBMK  2017), Antalya, Turkey, 
5-8 Oct. 2017, pp. 110-115. 

7. Saito, T. and Ouyang, J. "Client-side data 
visualization," 2009 IEEE International 
Conference on Information Reuse & 
Integration, Las Vegas, NV, 2009, pp. 194-
199. doi: 10.1109/IRI.2009.5211550. 

8. Valle, R. D. T., Passos, D., Albuquerque, C. 
and Muchaluat Saade, D. C. (2008). Mesh 
Topology Viewer (MTV): an SVG-based 
interactive mesh network topology 
visualization tool. 2008 IEEE Symposium on 
Computers and Communications, Marrakech, 
pp. 292-297.  

9. Lin, T., Zou, F., Kienle, H. M. and Muller, H. 
A. (2008). A domain-customizable SVG-based 
graph editor for software visualizations. 2008 
IEEE International Conference on Software 
Maintenance, Beijing, 2008, pp. 466-467.  

10. Fan, C., Wu, Y. and Wang, F. (2009). SVG 
based on Ajax and its application in graphical 
network topology management. 2009 IEEE 
International Conference on Communications 
Technology and Applications, Beijing. 

11. Kehe, W., Tingting, W., Yanwen, A. and 
Wenjing, Z. (2015). Study on the Drawing 
Method of Project Network Diagram. 2015 7th 
International Conference on Intelligent 
Human-Machine Systems and Cybernetics, 
Hangzhou, 2015, pp. 95-98. 

12. Yin, F. and Zhang, L. (2010). Research of 
WebGIS based on SVG and Ajax technology.  

2nd IEEE International Conference on 
Information and Financial Engineering, 
Chongqing, pp. 629-632. 

13. Fang, W., Zhang, J., Hu, B.,  Zhang, Q. and 
Ha, X. (2011). Graphics and data web 
publishing for local thermal power plant 
management information system. 2011 
International Conference on Multimedia 
Technology, Hangzhou, 2011, pp. 337-340. 

14. Birr, S., Mönch, J., Sommerfeld, D., Preim, U. 
and Preim, B. (2013). The 
LiverAnatomyExplorer: A WebGL-Based 
Surgical Teaching Tool. in IEEE Computer 
Graphics and Applications, vol. 33, no. 5, pp. 
48-58. 

15. Alhirabi, N. and Butler, G. (2015). A visual 
spreadsheet using HTML5 for whole genome 
display. 2015 IEEE Conference on 
Computational Intelligence in Bioinformatics 
and Computational Biology (CIBCB), Niagara 
Falls, ON, 2015, pp. 1-7. 

Authors’ contacts  
 
Erdinç Uzun, 
Organization: Namık Kemal University, 

Çorlu Faculty of Engineering, Computer 
Engineering Department 

Address: NKÜ Çorlu Mühendislik Fakültesi 
Dekanlığı, Silahtarağa Mahallesi 
Üniversite 1.Sokak, No:13,  59860 Çorlu / 
Tekirdağ / TURKEY 

Phone (optional): +90 (282) 250 2325 
E-mail: erdincuzun@nku.edu.tr 
 
Tarık Yerlikaya (Corresponding author) 
Oğuz Kırat 
Organization: Trakya University, Faculty of 

Engineering, Computer Engineering 
Department 

Address: Trakya Üniversitesi Ahmet 
Karadeniz Yerleşkesi Mühendislik 
Fakültesi 22020 Merkez / Edirne 
/TURKEY 

Phone (optional): +90 (284) 226 1217 / 
2215 

E-mail: tarikyer@trakya.edu.tr, 
ogzkirat@gmail.com 

 

 

Copyright  by Technical University - Sofia, Plovdiv branch, Bulgaria  
 

AN ALTERNATIVE EXECUTION MODEL FOR 
OPTIMUM BIG DATA HANDLING IN IOT-WSN 

CLOUD SYSTEMS 

GÜNGÖR YILDIRIM, YETKIN TATAR 

Abstract: Wireless sensor networks (WSNs) are one of the fundamental IoT subsystems, 
which can produce big data. In line with this, the quality of data collected by sub-WSN 
systems is an important parameter. Eliminating redundant information and making the 
collected data understandable/interpretable will increase the efficiency and enable an easy 
integration with other IoT systems. In the paper, for the cloud system involving sub-WSN 
systems, an intermediate execution model which improves the quality of the collected data 
is proposed. The model includes semantic and data fusion/aggregation components in 
order to make the data more understandable and optimal. The model also proposes an 
approach that enables an interactive data analysis to be done between the data clients and 
the provider system. With this interactive model, it is aimed that the clients can execute 
their own data fusion and aggregation algorithms on the understandable big data set.      

Key words: WSN, IoT, Sensor Cloud, Big Data 

1. Introduction 
Nowadays, many different technologies 

may come together under IoT systems and play role 
in the solution of more complicated problems. IoT 
systems, which inherently have a heterogeneous 
structure, usually obtain the measurement data 
needed from sensor networks. Therefore, WSNs are 
one the fundamental subsystems of IoT projects. 
Traditional WSNs are generally closed systems 
designed for goal-oriented applications. The general 
processes such as data collection, storage and 
analysis are performed within the same system. In 
traditional WSNs, the data gathered are stored in 
three different ways.  These are “internal storage”, 
“Centralized storage” and “hybrid storage” [1].  In 
the internal storage, the data gathered are stored in 
the resources of the system in a distributed fashion. 
This type of storage is often preferred in the WSN 
systems with a large number of nodes. The 
centralized storage is a method usually used in 
small scale WSNs. In the centralized storage, the 
data is collected and handled in a central unit which 
is often external. The hybrid method is the 
combination of the other methods. It is not efficient 
to use the three methods in big scale IoT WSN 
systems due to some factors, such as the limited 
resources of WSNs and the possibility that the data 
gathered may reach big data sizes. IoT systems 
often deploy WSNs as subsystems. The WSN 
systems that integrate with IoT systems may have a 

traditional structure or advanced features which use 
the IoT technologies such as 6LowPAN, RPL. 
Furthermore, these different WSNs may exist under 
the roof of a single IoT system (e.g., sensor cloud 
systems). One of the basic problems that arise in 
IoT systems which involve many different WSNs or 
a big scale WSN is the big and heterogeneous data 
management. The storage and handling of big data 
in IoT systems are usually carried out by a 
separated subunit involving big data management 
technologies [12, 13]. On the other hand, although 
today’s big data technologies have advanced 
features and enough flexibility, the quality of the 
gathered data may need to be improved. When 
considered the adverse situations such as 
redundancy and repeating, which decrease the 
quality of both data and communication, the 
importance of the quality of the big data can be 
better understood in terms of the performance of an 
IoT system. For this purpose, data aggregation and 
data fusion operations are used in traditional WSNs 
[2]. However, these are not sufficient. Data 
aggregation operations are performed generally on 
the WSN nodes and usually goal-orientation. On the 
other hand, it is too difficult to execute the same 
data aggregation operations in an IoT system 
involving many heterogeneous WSNs. In addition, 
the content of the data which are demanded by the 
clients of an IoT system is also an important issue. 
The fact that the clients can access the interpreted 

 98 


