
Copyright © 2018 by Technical University of Sofia, Plovdiv branch, Bulgaria ISSN Online: 2535-0048

Copyright by Technical University - Sofia, Plovdiv branch, Bulgaria

COMPARISON OF PYTHON LIBRARIES USED
FOR WEB DATA EXTRACTION

ERDİNÇ UZUN, TARIK YERLİKAYA, OĞUZ KIRAT

Abstract: There are several libraries for extracting useful data from web pages in Python.
In this study, we compare three different well-known extraction libraries including
BeautifulSoup, lxml and regex. The experimental results indicate that regex achieves the
best results with an average of 0.071 ms. However, it is difficult to generate correct
extraction rules for regex when the number of inner elements is not known. In experiments,
only %43.5 of the extraction rules are suitable for this task. In this case, BeautifulSoup and
lxml, which are the DOM-based libraries, are used for extraction process. In experiments,
lxml library yields the best results with an average of 9.074 ms.

Key words: HTML, DOM, Web Data Extraction, Python

1. Introduction
Over the years, due to increased content on

the Internet, it has become harder and harder to
differentiate between meaningful and unnecessary
contents on the web pages. Web data extraction [1]
(also known as web content extraction, web
scraping, web harvesting, etc.) is the process of
extracting user required information from web
pages. A large amount of data is continuously
created and shared online. Web data extraction
systems allow to easily collect these data with
limited expert user effort [2]. In this study, we will
explain how to access this data from web pages.
Moreover, time results of libraries in Python that
can be used extraction process are compared.

Web data extraction methods can be
classified into three different categories: Wrapper
based methods [3], DOM (Document Object
Model) based methods [4] and machine learning
based methods [5]. Wrapper in this task is a
program that extracts data of a particular
information from web pages. DOM-based methods
utilize structure, tags and attributes of HTML.
Machine learning-based methods are on state-of-
the-art machine learning algorithm and these
methods require labeled data obtained from the
DOM. This paper focuses on libraries that can be
used for this task. Overall performance in terms of
accuracy, time efficiency, memory and processor
efficiency varies dramatically depending on the
library and algorithms used, even while using
libraries classified in the same category.

In this paper, we will discuss time
efficiencies of web extraction methods including

regular expressions and two different data
extraction libraries in Python programming
language called BeautifulSoup [6] and lxml [7],
both can be categorized as a DOM based library.

2. Extraction from a Web Page
DOM [8] is an interface that categorizes

each element in an HTML or any other XML-based
document into nodes of a tree structure. Each node
represents a part of the document and can contain
other nodes. DOM standard is handled by World
Wide Web Consortium, like HTML. The contents
of DOM Tree can be changed by programming
languages such as JavaScript, C#, Java, Python and
etc.

A web page is downloaded after being
requested by a web user via a browser. After
downloading, the downloaded document is
processed and the DOM elements are produced.
Each DOM element is interpreted by the web
browser to construct the DOM tree while displaying
a web page. DOM elements can also be accessed
and modified during the display in a web browser of
a web page using client-side JavaScript.

There is a relationship between the DOM and
the web page as shown in Fig. 1. This web is from
www.collinsdictionary.com that presents
dictionaries for English or bilingual word reference
and plus thesauruses for expanding your word
power. In this web domain, <h2> is an HTML
element that defines the most important heading.
Moreover, this element have an attribute (class) and
value of attribute (h2_entry) that provide additional
information for the element.

© International Scientific Conference on Engineering, Technologies and Systems
 TECHSYS 2018, Technical University – Sofia, Plovdiv branch
 17 – 19 May 2018, Plovdiv, Bulgaria

Fig. 1. Relationship between the DOM and the web page

There are a lot of HTML elements such as
, <div>, <a>, and etc. in a web page. Fig. 1
shows only a crucial part of a web page that can be
used in extraction process. Additionally, these
elements have attributes such as id, class, title, href,
data-scr-mp3 and etc. id and class are widely used
attributes useful for applying styles and
manipulating an element with DOM and JavaScript.
These information can be used for extraction
process. For example, the following rules can be
used in this task.

 <h2 class="h2_entry"> : Title of a web

page
 <div class="content definitions cobuild br">

 : All definitions

 : Word forms
 <div class="hom"> : sub definitions

Web pages in a web domain have similar
elements. When the appropriate element is selected
from a web page, it can be used to extract other web
pages of web domain. For example, these rules can
be utilized in the other web pages of this domain.
In experiments, we have downloaded 30 different
web pages for 10 different web domain. Moreover,
we have prepared 1-4 rules for every web domain.

3. Regular Expressions and Data Extraction
Libraries for Python
Using regular expressions is the well-

known technique that can be used in the extraction
process. However, it can cause problems when the
number of inner tags is ambiguous. In this situation,
the DOM-based libraries can be utilized as a
solution for these problems.

3.1. Regular Expressions
Regular expressions (sometimes called as

regex or regexp) is a sequence of characters to
define a search pattern. Regular expressions can be
handled using the “re” module in Python. For this
module, we firstly prepared extraction pattern
shown in Code 1. For example, this code returns the
pattern <h2. class..h2_entry.>(.*?)</h1> for an
extraction rule of <h2 class="h2_entry">.

Code 1. Preparing a pattern for a given rule
def prepare_regex(pattern):

return pattern.replace(" ", ".").replace("\"",
".").replace("'", ".").replace("=", ".") + "(.*?)"
+ "</" + parse_TagName(pattern) + ">"

def parse_TagName(element):
 return element[(element.find('<') +
1):(element.find(' '))]

For an extraction rule, there are two

different extraction techniques: the whole document
can be searched or the extraction process can be
finalized by finding the first record. For some
extraction rules, terminating the extraction process
after the first extraction can improve the extraction
processing time. “re” module supports two different
extraction techniques. Code 2 finalizes the
extraction process after finding the relevant content.

re.seach method scans through string
looking for the first location and return a
corresponding match object. If no position in the
string matches the pattern, Code 2 returns empty
string. However, if more than one record exists, the
entire document should be looked at. Code 3
extracts all content from a web page.
Code 2. Extracting the first record with re
import re

 II-109

Copyright by Technical University - Sofia, Plovdiv branch, Bulgaria

def extract(html, pattern):
res = re.search(prepare_regex(pattern), html,
re.DOTALL)
 if res:
 return res.group(1)
 else:
 return ' '

Code 3. Extracting all records with re
def extract_all(html, pattern):

return re.findall(prepare_regex(pattern), html,
re.DOTALL)

re.findall method returns all non-overlapping
matches of pattern in a web page, as a list of strings.
In experiments, the effect of these extraction
techniques will be investigated.

3.2. Data Extraction Libraries in Python
Two well-known extraction libraries,

BeautifulSoup and lxml, are used for this task.

3.2.1. BeautifulSoup
BeautifulSoup is a Python data extraction

library developed by Leonard Richardson and other
open source developers. It is licensed under the
Simplified BSD License and works on both Python
2.7+ and Python 3. It can parse HTML and XML
documents and provides simple methods to interact
with the DOM model.

Code 4. BeatifulSoup extraction methods
from bs4 import BeautifulSoup
def extract(html, pattern, parser):

soup = BeautifulSoup(html, parser)
return soup.find(parse_TagName(pattern),
attrs=parse_Attributes(pattern,
parser)).decode_contents(formatter="html")

def extract_all(html, pattern, parser):
soup = BeautifulSoup(html, parser)

temp_res =
soup.find_all(parse_TagName(pattern),
attrs=parse_Attributes(pattern, parser))
html_res = []
for res in temp_res:

html_res.append(res.decode_contents(formatt
er="html"))

return html_res
def parse_TagName(element):

return element[(element.find('<') +
1):(element.find(' '))]

def parse_Attributes(element, parser):
soup = BeautifulSoup(element, parser)
e = soup.find(parse_TagName(element))
return e.attrs;

BeautifulSoup supports two different
extraction techniques like “re” module. Code 4
extracts only the first record in web page.

A BeautifulSoup object has two arguments.
The first argument is the source of web page, and
the second argument is the parser. The different
parsers including html.parser, lxml, and html5lib
can be adapted to the object of BeautifulSoup.
html.parser comes with Python’s standard
installation and provides a class named
HTMLParser which can be used as a basic HTML
and XHTML parser. lxml is feature-rich and easy-
to-use library for processing XML and HTML. It
provides Python bindings for the C libraries libxml2
and libxslt and mostly compatible with ElementTree
API. It is also open source and licensed under the
BSD license. html5lib conforms WHATWF HTML
specification which allows the module to parse
HTML content the same way a web browser does. It
is mainly developed by James Graham and open
source under the MIT license.

The find method uses when you only want
to find one result. The find_all method scans the
entire document looking for results. If the number
of extraction result is one content, you can use the
find() method for improving time efficiency of the
extraction process. In Code 4, the parse_TagName
method finds the element name of the pattern and
parse_Attributes method returns all attributes and
their values in list format. The decode_contents
method renders the contents of this element in html
format.

3.2.2. Lxml
Some web sites introduced BeautifulSoup

[9] recommend to install and use lxml for speed.
But also, it can be used stand-alone. lxml supports
XPath [10] for extracting the content of a tree.
XPath allows you to extract the content chunks into
a list. XPath uses "path like" syntax to identify and
navigate nodes in an html and xml document. Code
5 returns the XPath expression for a given
extraction rule.

Code 5. Preparing of XPath expression for a
given element
def prepare_XPath(pattern):

root = etree.fromstring(pattern + '</' +
parse_TagName(pattern) + '>')
temp=''
for att in root.keys():

temp += '[@'+ att + "='" + root.get(att) +
"']"

return ".//" + root.tag + temp

For example, Code 5 returns the XPath
expression .//h1[@class="h2_entry"] for an

extraction rule of <h2 class="h2_entry">. Code 6
has two function for extracting all results and the
first result.
Code 6. Extraction with lxml
from lxml import etree
from io import StringIO
def extract_all(html, pattern):

parser = etree.HTMLParser()
tree = etree.parse(StringIO(html), parser)
result = etree.tostring(tree.getroot())
root = tree.getroot()
my_list = []
yol = prepare_XPath(pattern)
for elem in root.findall(yol):

my_list.append(etree.tostring(elem,
encoding='unicode'))

return my_list
def extract(html, pattern):

parser = etree.HTMLParser()
tree = etree.parse(StringIO(html), parser)
result = etree.tostring(tree.getroot())
root = tree.getroot()
elem = root.find(prepare_XPath(pattern))
return etree.tostring(elem,
encoding='unicode')

 In Code 6, find method efficiently returns
only the first match. findall method returns a list of
matching Elements.

Table 1. Information about dataset

Domain Category Avg. (KB)
Aliexpress Shopping 93.66
Bild Newspaper 67.49
Booking Trip 689.11
Collinsdictionary Dictionary 38.93
Ebay Shopping 297.35
Imkb Movie 214.23
Sciencedirect Articles 48.65
Tchibo Shopping 27.61
Tutorialspoint Articles 28.56
W3schools Articles 58.01
 153.36

4. Experiments
We prepare a dataset which contains web

pages on many different content types, including
scientific articles, dictionary, movies, newspaper
articles, shopping, and trip/hotel information. For
constructing this dataset, we have designed a simple
crawler to download web pages. Then, this crawler
downloads 30 web pages for every domain. Table 1
gives the average file size of web domains for this

dataset. Moreover, we prepare extraction rules (like
in Section 2) for every domain. All experiments are
carried out on a computer using Intel Core i5-
3.2Ghz processor and 8 GB RAM running
Windows 10 operating system.

For measuring extraction time of these
methods, we use time.clock method. This method
returns wall-clock seconds elapsed, as a floating
point number. This method is based on the Win32
function QueryPerformanceCounter.

4.1. Time results of Regex
There are two techniques in regular

expressions. Table 2 indicates the extraction time
results and whether the result of the extraction is
correct or not.

Table 2. Time results and accuracy of regex

Method Avg. (ms)
extract 0.071
extract_all 0.307
 0.189
Accuracy: 390 / 600 = %43.5

As expected, focusing only on one result
rather than looking at the entire document has
yielded better results. Extract method is 4.324 times
faster than Extract_All method. However, 43.5% of
the extraction rules give the correct result. In this
case, DOM-based methods can be considered as a
solution.

4.2. Time results of BeautifulSoup
BeautifulSoup supports two different

extraction techniques and three different parsers for
this task. Table 3 indicates the extraction time
results.

Table 3. Time results of BeautifulSoup

Method Parser Avg. (ms)
extract html.parser 820.075
extract_all html.parser 1192.317
extract lxml 591.583
extract_all lxml 1025.892
extract html5lib 2191.472
extract_all html5lib 2626.747

 1408.014

 II-110

Copyright by Technical University - Sofia, Plovdiv branch, Bulgaria

def extract(html, pattern):
res = re.search(prepare_regex(pattern), html,
re.DOTALL)
 if res:
 return res.group(1)
 else:
 return ' '

Code 3. Extracting all records with re
def extract_all(html, pattern):

return re.findall(prepare_regex(pattern), html,
re.DOTALL)

re.findall method returns all non-overlapping
matches of pattern in a web page, as a list of strings.
In experiments, the effect of these extraction
techniques will be investigated.

3.2. Data Extraction Libraries in Python
Two well-known extraction libraries,

BeautifulSoup and lxml, are used for this task.

3.2.1. BeautifulSoup
BeautifulSoup is a Python data extraction

library developed by Leonard Richardson and other
open source developers. It is licensed under the
Simplified BSD License and works on both Python
2.7+ and Python 3. It can parse HTML and XML
documents and provides simple methods to interact
with the DOM model.

Code 4. BeatifulSoup extraction methods
from bs4 import BeautifulSoup
def extract(html, pattern, parser):

soup = BeautifulSoup(html, parser)
return soup.find(parse_TagName(pattern),
attrs=parse_Attributes(pattern,
parser)).decode_contents(formatter="html")

def extract_all(html, pattern, parser):
soup = BeautifulSoup(html, parser)

temp_res =
soup.find_all(parse_TagName(pattern),
attrs=parse_Attributes(pattern, parser))
html_res = []
for res in temp_res:

html_res.append(res.decode_contents(formatt
er="html"))

return html_res
def parse_TagName(element):

return element[(element.find('<') +
1):(element.find(' '))]

def parse_Attributes(element, parser):
soup = BeautifulSoup(element, parser)
e = soup.find(parse_TagName(element))
return e.attrs;

BeautifulSoup supports two different
extraction techniques like “re” module. Code 4
extracts only the first record in web page.

A BeautifulSoup object has two arguments.
The first argument is the source of web page, and
the second argument is the parser. The different
parsers including html.parser, lxml, and html5lib
can be adapted to the object of BeautifulSoup.
html.parser comes with Python’s standard
installation and provides a class named
HTMLParser which can be used as a basic HTML
and XHTML parser. lxml is feature-rich and easy-
to-use library for processing XML and HTML. It
provides Python bindings for the C libraries libxml2
and libxslt and mostly compatible with ElementTree
API. It is also open source and licensed under the
BSD license. html5lib conforms WHATWF HTML
specification which allows the module to parse
HTML content the same way a web browser does. It
is mainly developed by James Graham and open
source under the MIT license.

The find method uses when you only want
to find one result. The find_all method scans the
entire document looking for results. If the number
of extraction result is one content, you can use the
find() method for improving time efficiency of the
extraction process. In Code 4, the parse_TagName
method finds the element name of the pattern and
parse_Attributes method returns all attributes and
their values in list format. The decode_contents
method renders the contents of this element in html
format.

3.2.2. Lxml
Some web sites introduced BeautifulSoup

[9] recommend to install and use lxml for speed.
But also, it can be used stand-alone. lxml supports
XPath [10] for extracting the content of a tree.
XPath allows you to extract the content chunks into
a list. XPath uses "path like" syntax to identify and
navigate nodes in an html and xml document. Code
5 returns the XPath expression for a given
extraction rule.

Code 5. Preparing of XPath expression for a
given element
def prepare_XPath(pattern):

root = etree.fromstring(pattern + '</' +
parse_TagName(pattern) + '>')
temp=''
for att in root.keys():

temp += '[@'+ att + "='" + root.get(att) +
"']"

return ".//" + root.tag + temp

For example, Code 5 returns the XPath
expression .//h1[@class="h2_entry"] for an

extraction rule of <h2 class="h2_entry">. Code 6
has two function for extracting all results and the
first result.
Code 6. Extraction with lxml
from lxml import etree
from io import StringIO
def extract_all(html, pattern):

parser = etree.HTMLParser()
tree = etree.parse(StringIO(html), parser)
result = etree.tostring(tree.getroot())
root = tree.getroot()
my_list = []
yol = prepare_XPath(pattern)
for elem in root.findall(yol):

my_list.append(etree.tostring(elem,
encoding='unicode'))

return my_list
def extract(html, pattern):

parser = etree.HTMLParser()
tree = etree.parse(StringIO(html), parser)
result = etree.tostring(tree.getroot())
root = tree.getroot()
elem = root.find(prepare_XPath(pattern))
return etree.tostring(elem,
encoding='unicode')

 In Code 6, find method efficiently returns
only the first match. findall method returns a list of
matching Elements.

Table 1. Information about dataset

Domain Category Avg. (KB)
Aliexpress Shopping 93.66
Bild Newspaper 67.49
Booking Trip 689.11
Collinsdictionary Dictionary 38.93
Ebay Shopping 297.35
Imkb Movie 214.23
Sciencedirect Articles 48.65
Tchibo Shopping 27.61
Tutorialspoint Articles 28.56
W3schools Articles 58.01
 153.36

4. Experiments
We prepare a dataset which contains web

pages on many different content types, including
scientific articles, dictionary, movies, newspaper
articles, shopping, and trip/hotel information. For
constructing this dataset, we have designed a simple
crawler to download web pages. Then, this crawler
downloads 30 web pages for every domain. Table 1
gives the average file size of web domains for this

dataset. Moreover, we prepare extraction rules (like
in Section 2) for every domain. All experiments are
carried out on a computer using Intel Core i5-
3.2Ghz processor and 8 GB RAM running
Windows 10 operating system.

For measuring extraction time of these
methods, we use time.clock method. This method
returns wall-clock seconds elapsed, as a floating
point number. This method is based on the Win32
function QueryPerformanceCounter.

4.1. Time results of Regex
There are two techniques in regular

expressions. Table 2 indicates the extraction time
results and whether the result of the extraction is
correct or not.

Table 2. Time results and accuracy of regex

Method Avg. (ms)
extract 0.071
extract_all 0.307
 0.189
Accuracy: 390 / 600 = %43.5

As expected, focusing only on one result
rather than looking at the entire document has
yielded better results. Extract method is 4.324 times
faster than Extract_All method. However, 43.5% of
the extraction rules give the correct result. In this
case, DOM-based methods can be considered as a
solution.

4.2. Time results of BeautifulSoup
BeautifulSoup supports two different

extraction techniques and three different parsers for
this task. Table 3 indicates the extraction time
results.

Table 3. Time results of BeautifulSoup

Method Parser Avg. (ms)
extract html.parser 820.075
extract_all html.parser 1192.317
extract lxml 591.583
extract_all lxml 1025.892
extract html5lib 2191.472
extract_all html5lib 2626.747

 1408.014

 II-111

Copyright by Technical University - Sofia, Plovdiv branch, Bulgaria

lxml parser for BeautifulSoup is the best

parser for this task. html5lib and html.parser are just
not very good results. As expected, the time results
of extract methods are better than the time results of
extract_all methods in all parsers. Finally, we
examine lxml parser with its methods.

4.3. Time results of lxml
The lxml library is a binding for the C

libraries libxml2 and libxslt. It is unique in that it
combines the speed and XML feature completeness
of these libraries with the simplicity of a native
Python API. It can be used with BeautifulSoup, but
it can be also utilized stand-alone. In this section,
we examine this library stand-alone.

Table 4. Time results of lxml

Method Avg. (ms)
extract 9.047
extract_all 9.480
 9.277

Time results of lxml is better than time results
of BeautifulSoup. lxml parser in BeautifulSoup
makes the results better, but the use of lxml stand-

alone provides a much better improvement. (See
Fig. 2 and 3 for comparing all libraries)

5. Conclusion
In this study, libraries of Python for

extracting data from web pages are compared in
order to understand their time durations. As
expected, the experimental results show that regex
gives better time duration with 0.071 ms. However,
43.5% of the extraction rules give the correct result.
In this case, DOM-based libraries including
BeautifulSoup and lxml can be considered as a
solution. Lxml (stand-alone) provides better time
results in DOM-based libraries. BeautifulSoup gave
worse results because of extra processes for creating
DOM even when using lxml parser.

In future work, we will need to develop
more effective and effective methods for this task.
Moreover, time results of other languages [11] on
this task are compared.

Additional Information

All codes are open-source. Source codes and dataset
are as follows.

 https://github.com/erdincuzun/WebDataExt
ractionInPython

A: All extraction results, 1: only first result

Fig. 2. Average time duration results of Regex and lxml

 II-112

Copyright by Technical University - Sofia, Plovdiv branch, Bulgaria

lxml parser for BeautifulSoup is the best

parser for this task. html5lib and html.parser are just
not very good results. As expected, the time results
of extract methods are better than the time results of
extract_all methods in all parsers. Finally, we
examine lxml parser with its methods.

4.3. Time results of lxml
The lxml library is a binding for the C

libraries libxml2 and libxslt. It is unique in that it
combines the speed and XML feature completeness
of these libraries with the simplicity of a native
Python API. It can be used with BeautifulSoup, but
it can be also utilized stand-alone. In this section,
we examine this library stand-alone.

Table 4. Time results of lxml

Method Avg. (ms)
extract 9.047
extract_all 9.480
 9.277

Time results of lxml is better than time results
of BeautifulSoup. lxml parser in BeautifulSoup
makes the results better, but the use of lxml stand-

alone provides a much better improvement. (See
Fig. 2 and 3 for comparing all libraries)

5. Conclusion
In this study, libraries of Python for

extracting data from web pages are compared in
order to understand their time durations. As
expected, the experimental results show that regex
gives better time duration with 0.071 ms. However,
43.5% of the extraction rules give the correct result.
In this case, DOM-based libraries including
BeautifulSoup and lxml can be considered as a
solution. Lxml (stand-alone) provides better time
results in DOM-based libraries. BeautifulSoup gave
worse results because of extra processes for creating
DOM even when using lxml parser.

In future work, we will need to develop
more effective and effective methods for this task.
Moreover, time results of other languages [11] on
this task are compared.

Additional Information

All codes are open-source. Source codes and dataset
are as follows.

 https://github.com/erdincuzun/WebDataExt
ractionInPython

A: All extraction results, 1: only first result

Fig. 2. Average time duration results of Regex and lxml

A: All extraction results, 1: only first result, BS: BeautifulSoup, P1: html.parser, P2: lxml, P3: html5lib
Fig. 3. Average time duration results BeautifulSoup Parsers

REFERENCES

1. Rahman, A.F.R., Alam, H. and Hartono, R.
(2001). Content extraction from HTML
documents, International workshop on Web
document Analysis, pp. 7-10, 2001.

2. Ferrara, E., De Meo, P., Fiumara, G.,
Baumgartner, R. (2014). Web data extraction,
applications and techniques: A survey,
Knowledge-Based Systems, Volume 70, 2014,
pp. 301-323.

3. Flesca, S., Manco, G., Masciari, E., Rende, E.,
Tagarelli, A. (2004). Web wrapper induction: a
brief survey”, In: AI Communications, vol. 17,
pp. 57–61. IOS Press, Amsterdam.

4. Álvarez-Sabucedo, L. M., Anido-Rifón, L. E.
and Santos-Gago, J. M. (2009). Reusing web
contents: a DOM approach, Softw: Pract.
Exper., 39: 299–314. doi:10.1002/spe.901.

5. Fu, L., Meng, Y., Xia Y. and Yu, H. (2010).
Web Content Extraction based on Webpage
Layout Analysis”, Second International
Conference on Information Technology and
Computer Science, Kiev, 2010, pp. 40-43.

6. BeatifulSoup,https://www.crummy.com/softwa
re/BeautifulSoup/, (12.04.2018)

7. lxml, http://lxml.de/, (12.04.2018)
8. DOM, https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/I
ntroduction, (12.04.2018)

9. Crummy,https://www.crummy.com/software/B
eautifulSoup/bs4/doc/, (12.04.2018)

10. XPath, https://www.w3.org/TR/xpath/,
(12.04.2018)

11. Uzun, E., Buluş, H. N., Doruk, A., Özhan, E.
(2017). Evaluation of Hap, AngleSharp and
HtmlDocument in web content extraction.
International Scientific Conference’2017
(UNITECH’17), Gabrovo, Bulgaria, November
17-18, Vol. II – pp. 275-278.

Authors’ contacts

Erdinç Uzun,
Organization: Namık Kemal University,

Çorlu Faculty of Engineering, Computer
Engineering Department

Address: NKÜ Çorlu Mühendislik Fakültesi
Dekanlığı, Silahtarağa Mahallesi
Üniversite 1.Sokak, No:13, 59860 Çorlu /
Tekirdağ / TURKEY

Phone (optional): +90 (282) 250 2325
E-mail: erdincuzun@nku.edu.tr

Tarık Yerlikaya (Corresponding author)
Oğuz Kırat
Organization: Trakya University, Faculty of

Engineering, Computer Engineering
Department

Address: Trakya Üniversitesi Ahmet
Karadeniz Yerleşkesi Mühendislik
Fakültesi 22020 Merkez / Edirne
/TURKEY

Phone (optional): +90 (284) 226 1217 /
2215

E-mail: tarikyer@trakya.edu.tr,
ogzkirat@gmail.com

 II-113

