
Copyright Ó 2011 by Technical University Sofia, branch Plovdiv, Plovdiv, BULGARIA. ISSN 1310 - 8271

ÓJournal of the Technical University Sofia, branch Plovdiv

“Fundamental Sciences and Applications”, Vol. 16, 2011

International Conference Engineering, Technologies and Systems

TechSys 2011

BULGARIA

REDUCING COMPUTATIONAL COMPLEXITY

BY RESTRICTING THE SIZE OF COMPARED

WEB CONTENTS

ERDINC UZUN, TARIK YERLIKAYA, MELTEM KURT

Abstract. Extracting the relevant contents on web pages is an important issue for researches on

information retrieval, data mining and natural language processing. In this issue, contents of

tags in same domain web pages can be used to discover unnecessary contents. However, little

changes in tag contents of web pages can cause problems in extraction. Therefore, we have

adapted levenshtein distance algorithm to overcome these problems. Nevertheless, tag contents

that may contain too many characters, have a negative impact on computational complexity.

Hence, a solution, which reduces this complexity by comparing only a few characters, is

proposed. In experiments, this solution gives a significant improvement (with 84.37%) in the

performance of the use of levenshtein distance algorithm to find irrelevant contents.

Key words: Reducing Complexity, Levenshtein Distance Algorithm, Parsing HTML

1. Introduction

The web is an invaluable source of data for

researches on subjects of information retrieval,

natural language processing and data mining.

However, web pages have contained unnecessary

contents in the recent years. These contents can be

filtered by determining whether contents of tags in

web pages are necessary or not. Tags can be

grouped by using tag properties such as id, attribute

and style. Nonetheless, contents of these tags may

be little changes between web pages. In this study,

we ignore these little changes by utilizing

levenshtein distance algorithm to this task.

The Levenshtein distance algorithm is

widely used to determine how similar two strings

are. Therefore, it can be utilized several different

researches such as spell checking [1], speech

recognition [2], DNA analysis [3] and plagiarism

detection [4]. In this study, we adapt this algorithm

to solve the problem of repetition in the contents of

tags in web pages.

In general, extracting content of text in

conventional techniques required knowledge on

structure of the text. Web pages are semi-structured

documents mostly written in HTML that defines

tags. These tags can be parsed with different parsers

such as DOM and SAX. Then, these parsed tags can

be used for determining whether contents of tags are

relevant or not. Web pages contain unnecessary

contents such as advertisements, banners,

navigation panels, news categories and comments

of users [5, 6, 7, 8]. These contents also have

negative effects in storing, searching and indexing.

Therefore, we develop an intelligent crawler that is

namely ICrawler. ICrawler is a module of SET

(Search Engine for Turkish) project that has a

search engine, an evaluator module and a stemming

module. Classes of SET, are open source, are

available via the web page

http://bilgmuh.nku.edu.tr/SET/. This crawler

automatically detects irrelevant contents and

extracts relevant contents. We choose the layout

tags (<div>, <table> and) that are mostly used

in design of web pages. We also design a simple

content extractor that utilizes regular expressions

and string functions. However, the simple content

extractor encounter with a problem in comparing

contents of two tags. This study is described the

solution about this comparison problem.

2. Structure of HTML

HTML(Hyper Text Markup Language) used

for data sharing on the internet is the predominant

markup language for web pages. HTML is written

in the form of HTML elements consisting of tags,

enclosed in angle brackets (like <div>), within the

- 157 -

web page content. HTML tags normally come in

pairs like <div> (opening tags) and </div> (closing

tags). In the layout design of a web page, layout

tags are commonly used <div> and <table>.

Therefore, we have used these tags in filtering

unnecessary contents. Table 1 indicates an example

about the use of <div>.

Table 1. Example about tag of <div>

<div id=”_top” class=”header">

Main part of contents (starting…)
<div class="head">

Inner part of contents (1)

</div>

<div class="logo">

Inner part of contents (2)

</div>

Main part of contents (end…)
</div>

<div> tag has id, class and style features

such as width, height, top, bottom and margin. In

general, these attributes can be used to separate a

tag from the others. In this study, we have utilized

these attributes by grouping contents of layout tags.

After grouping these tags, we compare the equality

of the contents of layout tags for determining to

extract unnecessary contents. However, little

changes in html pages make it harder to compare

these contents. Table 2. shows the little changes in

web pages.

Table 2. Similar Parts from two web pages

<div class="menu">

Main Menu

Publications

Links

About us

<div/>

<div class="menu">

Main Menu

Publications

Links

About us

</div>

Normally, these two web pages are similar.

But the contents of these two pages are not equal

because of string “Main Menu” in web page 1 is

taken bold tags (…), in web page 2 string
“Publication” is bold. Hence, we compare the
contents of two <div> tags with equality; the result

is that two web pages are different. Instead of this

method, we have used levenshtein distance

algorithm to analyze the contents and decided to

accept that the pages on a certain threshold value

are the same. As expected, computational

complexity has increased. In addition, we have

observed that the contents of <div> tags have too

many characters for comparison. The next aim is to

reduce computational complexity and solve

problem by providing less comparison between

contents of layout tags. In this study, we also have

tested the results of the methods and techniques are

described below.

At this point, firstly we have compared by

taking a certain number of characters from initial of

contents. (See Algorithm 1)

Algorithm 1

Similarity control: starting from initial character to

200 characters

IF (length of string1 > 200)

string1 = string1.Substring (0, 200)

IF (length of string2 > 200)

string2 =string.Substring(0, 200)

IF (levenshtein (string1, string2) > 80%)

RETURN String1 is equal to String2

ELSE

RETURN String1 is not equal to String2

The substring() method, which is used in algorithm,

extracts the characters from a string, between two

specified indices, and returns the new sub string.

But we have seen that, initial parts of the web pages

are very similar which make it appear like both are

the same contents. Analysis shows that main

difference between contents of tags is in the middle

of them. Therefore, we have devised an algorithm

for solving this problem. (See Algorithm 2)

Algorithm 2

Similarity control: starting from finding position to

200 characters

m = string1.Length;

IF (string2.Length > m)

m = string2.Length;

m = m / 2;

m = m - 100;

IF (length of string1 > 200)

String1 = string1.Substring(m, 200)

IF (length of string2 > 200)

String2 = string2.Substring(m, 200)

IF (levenshtein (string1, string2) > 80%)

RETURN String1 is equal to String2

ELSE

RETURN String1 is not equal to String2

- 158 -

Copyright Ó 2011 by Technical University Sofia, branch Plovdiv, Plovdiv, BULGARIA. ISSN 1310 - 8271

Mid-point of the contents of tags is selected,

and then a certain number of characters left and

right of this point are taken into account to extract

new strings. Our simple analysis indicates that this

solution works efficiently on different web

domains. In web pages, the actual content is usually

viewed in the central part of HTML. Therefore, our

solution argues that the use of central contents is

appropriate for comparing substrings of tag

contents.

3. Levenshtein Algorithm

The latest word processor programs are

capable of suggesting a replacement for a mistyped

word. Spelling checkers know how to evaluated

distance between a misspelled word and the words

in its files. Words whose evaluated distance is the

smallest are offered as candidates for replacement.

 Levenshtein distance is named after

Vladimir Levenshtein, who considered this distance

in 1965. It is useful in applications that need to

determine how similar two strings are, such as spell

checkers, speech recognition, DNA analysis and

plagiarism detection. It's defined for strings of

arbitrary length. It counts the differences between

two strings (actually words, sentences), where we

would count a difference not only when strings have

different characters but also when one has a

character whereas the other does not. Simply, this

algorithm keeps the value of insertion operation,

deletion operation and substitution operation.

For example; the Levenshtein distance between

“running” and “sunday” is 5,since these five edits

change one into the other, and there is no way to do

it with fewer than five edits.

Table 2. En example for matrix that is used in

Levenshtein distance algorithm

r u n n i n g

0 1 2 3 4 5 6 7

s 1 1 2 3 4 5 6 7

u 2 2 1 2 3 4 5 6

n 3 3 2 1 2 3 4 5

d 4 4 3 2 2 3 4 5

a 5 5 4 3 3 3 4 5

y 6 6 5 4 4 4 4 5

1. main mail(substitution of ‘n’ with ‘l’ ,distance
is 1)

2. date data (substitution of ‘e’ with ‘a’ ,distance
is 1)

3.filmlmlmlm filmy (insert ‘y’ at the end ,distance is 1)

While calculating the distance between two

strings with this algorithm, matrix is created.

Nevertheless, as the number of compared string

increases, matrix size expands exponentially. When

this algorithm is applied to similarity control of the

contents of layout tags, processing time decreases

because of exponential matrix size. Therefore, we

have used certain number of characters for reducing

matrix size.

4. Experiments

In experiments, 1000 pages are

downloaded from popular Turkish daily newspaper

that is namely Milliyet. The Figure 1 indicates that

the count of obtaining contents from layout tags for

some intervals.

Fig. 1. The Count of Obtained Contents from

Layout Tags

For example, layout tags which contain fewer than

100 characters have 1,842 contents of tag. Our

Crawler creates approximately 100x100 matrixes

for these contents. Matrix size expands

exponentially for different intervals so that the

complexity and cost of system increase. This

increasing has negative effects on system. Fig. 2.

shows that there is an exponential growth with the

increase in the number of characters (Normal Case).

Fig. 2. Expansion of Matrix Size

- 159 -

8,799 different contents are created for our testing

data and 60.56% of these values are greater than

200. For instance, there are 1,000,000 comparisons

for matrix size of 1000x1000. However, after

applying our solution to Levenshtein Distance

Algorithm, the number of comparison reduces to

40,000 for values that are greater than 200. In

normal case, there are 10,078,600 comparisons for

testing data of Milliyet, but applied by our solution

has only 1,575,600 comparisons. That is, 84.37%

improvements are obtained in complexity and costs

by using our algorithm.

5. Conclusion

Matrix sizes are crucial issue for finding

similarity of two data because of complexity and

cost on researches such as spell checking, speech

recognition, DNA analysis and plagiarism

detection. Complexity and cost of algorithms can be

reduced by using correct parts of data. In this study,

we have used only the central parts of tags contents

for maintain it. Because, according to experiments,

changing parts of tags highly occur in the middle of

them. Firstly, necessary contents have been found

and then we have compared similarity between the

contents of tags with adapting levenshtein distance

algorithm. Thanks to our algorithm, not only matrix

size decreased but also complexity reduced by

comparing only a few characters. Therefore, using

our algorithm, instead of using levenshtein

algorithm to find unnecessary contents, provides

(with 84.37%) improvement in the performance.

References

1. G. Navarro A guided tour to approximate string

matching. ACM Computing Surveys (CSUR)

archive, 33(1), pp. 31-88, 2001.

2. J. Fiscus, J. Ajot, N. Radde, C. Laprun

Multiple Dimension Levenshtein Edit Distance

Calculations for Evaluating Automatic Speech

Recognition Systems During Simultaneous Speech,

Proceedings of Language Resources and Evaluation

(LREC), Genoa, Italy, May 2006.

3. X. Wu, F. Lü, B. Wang, J. Cheng Analysis of

DNA Sequence Pattern Using Probabilistic Neural

Network Model, Journal of Research and Practice

in Information Technology 37(4), 2005.

4. Z. Su, B. Ahn, K. Eom, M. Kang, J. Kim, M.

Kim Plagiarism Detection Using the Levenshtein

Distance and Smith-Waterman Algorithm,

Proceedings of the 2008 3rd International

Conference on Innovative Computing Information

and Control, 2008.

5. Yerlikaya T., Uzun E İnternet Sayfalarında Asıl

İçeriği Gösterebilen Akıllı Bir Tarayıcı. Akıllı

Sistemlerde Yenilikler ve Uygulamaları

Sempozyumu (ASYU-2010) 2010; 21-24 Haziran,

Kayseri & Kapadokya, ISBN: 978-975-6478-60-8,

53-57.

6. L. M. Álvarez-Sabucedo, L. E. Anido-Rifón, J.

M. Santos Reusing web con-tents: a DOM

approach. Software: Practice and Experience 2009,

39(3): 299–314, 2009.

7. Y. Zheng, X. Cheng, K. Chen Filtering noise in

Web pages based on parsing tree. The Journal of

China Universities of Posts and

Telecommunications; 15, 46-50.

8. S. Gupta, G. E. Kaiser, G. Peter Chiang M F,

Starren J. Automating Content Extraction of HTML

Documents. World Wide Web: Internet and Web

Information Systems; 8, 179-224, 2005.

Department of Computer Engineering,

Namik Kemal University, Corlu

Engineering Faculty, Corlu / Tekirdag /

Turkey

E-mail: erdincuzun@nku.edu.tr

Department of Computer Engineering,

Trakya University, Ahmet Karadeniz

Yerleskesi, Edirne / Turkey

E-mail: tarikyer@trakya.edu.tr

E-mail: meltemkurt@trakya.edu.tr

- 160 -

